

AP-003-045101 Seat No. _____

BVOC (CHE TECH) (Sem. I) (CBCS) Examination March/April - 2016

BVCT - 101 : Core Fundamental Chemistry - I

	Faculty Code : 003 Subject Code : 045101
Time : 3 Hou	rs] [Total Marks : 70
Instructions	 (1) All questions are compulsory & carry equal marks. (2) Draw diagram and/or scheme wherever necessary.
1 (a) Ans (1)	wer the following multiple choice questions: Which of the following -equations are correct? (A) H = E+PV (B) E = H - PV (C) PV = H - E (D) All of these
(2)	A process returns to original state, after completing a series of changes. Then this process is known as
	(A) Adiabatic process(B) Cyclic process(C) Isothermal process(D) Irreversible process
(3)	Normality of 0.02M Ca(OH) ₂ is (A) 0.1 N (B) 0.02 N (C) 0.04 N (D) 0.01 N
(4)	Mole per litre is also known as (A) Molarity (B) Molality (C) Normality (D) None of these
(5)	Correct electron configuration of oxygen is (A) $1s^22s^22p^33s^1$ (B) $1s^22s^22p^23s^2$ (C) $1s^22s^22p^4$ (D) None of above
(6)	For a given system, First Ionization Potential (I_1) Second Ionization Potential (I_2) (A) Does not depend on (B) Equal to (C) Is greater than (D) Is less than

	(7)	A saturated solution is that in which
		(A) concentration of dissolved and undissolved
		solute is same
		(B) there exists an equilibrium between dissolved
		and undissolved solutes
		(C) concentration of undissolved salute is negligible
		(D) concentration of dissolved solute is negligible
	(8)	The order of successive ionization energy is,
		(A) $I_1 < I_2 < I_3$ (B) $I_1 > I_2 < I_3$
		(C) $I_3 < I_2 < I_1$ (D) $I_1 < I_2 > I_3$
	(9)	According to concept of Lowry-Bronsted, base has
		a tendency to
		(A) Donate OH^{-1}
		(B) Accept H^{+1}
		(C) Donate lone pair of electrons
		(D) All of above
	(10)	In the aqueous solution of HCl,
		(A) $[H^+] = 1.0 \times 10^{-7}$
		(B) $[H^+] < 1.0 \times 10^{-7}$
		(C) $[H^+] > 1.0 \times 10^{-7}$
		(D) $[H^+] = 1.0 \times 10^{-14}$
(D)	Ana	wer the following multiple choice questions. 20
(B)	(1)	
	(1)	defined as the summation of divided by
		during each infinite small change of a
		process carried out reversibly.
		(A) Heat exchange, absolute temperature
		(B) Absorbed heat, relative temperature
		(C) Heat release, decrease temperature
		(D) Heat, work
	(2)	For a nonspontaneous process ΔG is than
	(-)	zero and for a spontaneous process ΔG is
		than zero.
		(A) More, less (B) Less, more
		(C) Less, less (D) More, equal
	(3)	In 1M one litre H_2S0_4 , water is added to make
	(-)	5 litre. Normality of this diluted H ₂ SO ₄ is
		(A) 0.2 N (B) 0.33 N
		(C) 5 N (D) 2.5 N

2

[Contd...

AP-003-045101]

(4)	What will be molarity and normality of a solution
	containing 14.7 gm H ₃ PO ₄ in 1.5 litre solution?
	(A) 0.6M, 0.2N (B) 0.2M, 0.6N
	(C) 0.6M, 0.6N (D) 0.1M, 0.3N
(5)	What are correct electronic configurations of Cr
` '	and Cu?
	(A) Cr: $[Ar]3d^6$ Cu: $[Ar]3d^5$ $4s^1$ $4d^5$
	(B) Cr: $[Ar]3d^5 4s^1$ Cu: $[Ar]3d^{10} 4s^1$
	(C) Cr: $[Xe]3d^5 4s^1$ Cu: $[Xe]3d^9 4s^2$
	(D) Cr: $[Ar]3d^4 4s^2$ Cu: $[Ar]3d^9 4s^2$
(6)	In a periodic table, Electronegativity along
(0)	the period and down the group.
	(A) Increases, Decreases
	(B) Decreases, Increases
	(C) Increases, Increases
(7)	(D) Decreases, Decreases
(7)	According to Lewis theory, AlCl ₃ is while
	Aniline is
	(A) Acid, Base (B) Metal, Non-metal
(0)	(C) Base, Acid (D) Neutral, Base
(8)	2,3-dichloro pentane burns with flame in
	bielstain test, and flame when heated over
	porcelain piece,
	(A) Green, non-shooty (B) Yellow, non-shooty
	(C) Yellow, shooty (D) Green, shooty
	ÇI
(9)	Correct IUPAC name of COOH is and
	CICOOF
	(A) 2 ablambatanais asid A ablambatanais asid
	(A) 3-chlorobutanoic acid, 4-chlorobutanoic acid
	(B) 2-chlorobutanoic acid, 1-chlorobutanoic acid
	(C) 3-chloropentanoic acid, 4-chloropetanoic acid
(10)	(D) 3-chloroacetic acid, 4-chlorobutanoic acid
(10)	What is the correct structure of 3,6-dichloro-2
	methylheptane?
	çı çı

- 2 Answer any 4 out of the following 6 questions:
- 20
- (1) Write a detailed note on wave particle duality.
- (2) Write a detailed note in Atomic Radii, including factors affecting Atomic Radii, classification of Atomic Radii, and variation in Atomic Radii in periodic table.
- (3) Explain chemistry and applications of following tests in organic qualitative analysis: (i) Lassaigne Test (ii) Nature Test (or Test for Nature)
- (4) Explain separation of Cd^{+2} and Cu^{+2} .
- (5) Write a short note on internal energy and enthalpy.
- (6) Explain primary and secondary standards in detail.
- 3 Answer any 4 out of the following 6 questions.

20

- (1) Explain following terms in brief:
 - (i) Boiling paint elevation,
 - (ii) Osmotic Pressure.
- (2) Write a detailed note on Inductive effect with example.
- (3) Explain the buffer action for the mixture of NH₄OH and NH₄Cl with mechanism.
- (4) Deduce an expression for the degree of hydrolysis (x) of a weak acid strong base in terms of K_a and K_w .
- (5) Define and explain electro negativity and electron affinity.
- (6) Describe the procedure of separating liquid mixture by fractional distillation.